
GA2016 – XIX Generative Art Conference

Page 377

 Programming generative grammars
(paper)

Topic: Art, Architecture

Author(s):
Umberto Roncoroni
Lima, Perú, Universidad de Lima, Facultad de Comunicación

Veronica Crousse
Lima, Perú, Pontificia Universidad Católica del Perú, Facultad de Arte

The paper is a summary of a research project report that won the 2014/2015 Multidisciplinary Research Prize granted by
the Consorcio de Universidades of Lima, Perù. The goal of the project was to develop new generative programming
techniques for string-substitution rewriting systems, such as Shape Grammars and L-Systems, applied to art, design and
architecture.
These systems are widely used for their unique creative processes and capabilities to generate complex and emergent
forms such as fractals or organic 2D/3D patterns.
Many implementations of such algorithms are available, but they basically work on already known principles and
concepts. Much more can be done to develop their efficiency and creative capabilities. The goal is to add more flexibility
and interaction to their recursive functions and to achieve truly generative processes; so far, emergence and complexity
are only simulations, tricks, or even cheats concocted with pseudo random functions.
Through the procedural analysis of Peruvian pre Columbian designs and software experimentation we have discovered
that Shape Grammars, L-Systems and recursive functions do offer unexploited programming capabilities that power up
their creative and generative qualities. In this sense, the study of ancient Peruvian design (tokapus, quipus, etc.) has
improved the finesse of the generative digital process, because this kind of art shares a lot with actual generative design
paradigms, such as the connection with nature, complexity, dynamic systems rules, and more.
Speaking of results, we have added to standard recursive algorithms dynamic and real time rules, masks, loops, go to,
symbol’s waiting lists (like in multithread programming), automatic formulas, calculation, nested L-Systems and
grammars, chemical and genetic reactions, auto editing and new interface concepts. The interface design is really
important, because the symbolic manipulation, to be truly generative and emergent, must be transparent, editable and
fully interactive in real time. In this paper we will show the methodology of our research: first the analytical and visual
comparison between natural and pre-Columbian forms, in the second place hand drawn algorithmic designs, finally, the
implementation of the new set of recursive rules in a new L-Systems application written in VB 6.0 and C#.

Fig 1. Analysis of natural and Moche/Huari patterns. Fig. 2. Procedural hand drawn designs. Fig 3. Software design Fig. 4. 3D
programable double spiral rule with L-System. Fig 5 y 6. Implementation of programmable L-Systems rules.Fig. 7, 8. 3D image
processing applications with programmable L-Systems.
hroncoro@ulima.edu.pe
vcrouss@pucp.edu.pe

Key words: art, complexity, nature, pre Columbian culture, Shape Grammars
Main References:
[1] DE PRADA, M. Arte y naturaleza. El sentido de la irregularidad en el arte y en la
arquitectura. Buenos Aires: Nobuko. (2009).
[2] LEYGHTON, M. A Generative Theory of Shape. Berlín: Springer-Verlag. (2001).
[3] CROUSSE, V. Reencontrado la espacialidad en el arte público del Perú. Tesis
doctoral en Espacio público y regeneración urbana: arte, teoría y conservación del
patrimonio. Barcelona: Universidad de Barceloan, Facultad de Bellas Artes. (2011). [en
línea]. <http://www.tdx.cat/handle/10803/1551> [Fecha de consulta: 20/8/2015].
[4] ALLASMAA, J. La mano que piensa. Sabiduría existencial y corporal en la
arquitectura. Barcelona: Ed. Gustavo Gili. (2012).

mailto:hroncoro@ulima.edu.pe
mailto:vcrouss@pucp.edu.pe

GA2016 – XIX Generative Art Conference

Page 378

Programming shape grammars and string substitution
rewriting systems for generative art

Dr. Umberto Roncoroni Osio.
Universidad de Lima, Lima, Perù.

www.digitalpoiesis.org
e-mail: hroncoro@ulima.edu.pe

Dra Veronica Crousse Rastelli

PUCP, Lima, Perù.
e-mail: vcrouss@pucp.edu.pe

Abstract
The paper is a summary of a research project report that won the 2014/2015
Multidisciplinary Research Prize granted by the Consorcio de Universidades of Lima, Perù.
The goal of the project was to develop new generative programming techniques for string-
substitution rewriting systems, such as Shape Grammars and L-Systems, applied to art,
design and architecture.
These systems are widely used for their unique creative processes and capabilities to
generate complex and emergent forms such as fractals or organic 2D/3D patterns.
Many implementations of such algorithms are available, but they basically work on already
known principles and concepts. Much more can be done to develop their efficiency and
creative capabilities. The goal is to add more flexibility and interaction to their recursive
functions and to achieve truly generative processes; so far, emergence and complexity are
only simulations, tricks, or even cheats concocted with pseudo random functions.
Through the procedural analysis of Peruvian pre Columbian designs and software
experimentation we have discovered that Shape Grammars, L-Systems and recursive
functions do offer unexploited programming capabilities that power up their creative and
generative qualities. In this sense, the study of ancient Peruvian design (tokapus, quipus,
etc.) has improved the finesse of the generative digital process, because this kind of art
shares a lot with actual generative design paradigms, such as the connection with nature,
complexity, dynamic systems rules, and more.
Speaking of results, we have added to standard recursive algorithms dynamic and real
time rules, masks, loops, go to, symbol’s waiting lists (like in multithread programming),
automatic formulas, calculation, nested L-Systems and grammars, chemical and genetic
reactions, auto editing and new interface concepts. The interface design is really
important, because the symbolic manipulation, to be truly generative and emergent, must
be transparent, editable and fully interactive in real time.
In this paper we will show the methodology of our research: first the analytical and visual
comparison between natural and pre-Columbian forms, in the second place hand drawn
algorithmic designs, finally, the implementation of the new set of recursive rules in a new
L-Systems application written in VB 6.0 and C#.

A short introduction to shape grammars and LSystems
Shape grammars where first introduced by Stiny and Gips [1] in the seventies, following
Chomsky’s generative linguistic paradigm. L-Systems, a shape grammars subgenre,

GA2016 – XIX Generative Art Conference

Page 379

where developed by biologist Lindenmayer [2][3] to study and simulate by computational
means the morphogenesis and morphology of plants.
Both systems are String-Substitution Rewriting Systems (SSRS), which means that they
can build procedurally complex forms with a set of alphanumeric symbols, a substitution
process that transform these symbols recursively and a set of rules that specify the
transformation’s algorithm and parameters.

Fig.1. From left to to right: initiator, the rule and 5 steps of the SSRS development.

SSRS are highly appreciated in art, industrial design and architetcure for their fractal
capabilities, simplicity and efficiency. They can build very complex forms by means of
simple rules and a even more simple algorithms [4].
With the help of controlled randomness and proper parametrization, SSRS can simulate
complex irregular natural forms, like rocks, mountains and organic forms like trees [5].

Fig.2. Increasing randomness in a L-Systems tree grammar.

Nevertheless, SSRS are still underestimated and its capabilities unexploited. They can
give a lot more than actual implementations allow to do. The goal of this paper is to
develop techniques to improve the scope and the possibilities of these recursive systems.
In fact, they could be considered a complete programming language.
Our SSRS research and development was grounded on the analysis of natural forms
[6][7][8][9] and pre Columbian designs [10]. Both formal contexts share procedural,
recursive and generative rules; this procedural correspondence unlocked new insights on
emergent algorithms. We cannot develop this aspect of our research, but the following
images hopefully will offer some evidences on the matter.

GA2016 – XIX Generative Art Conference

Page 380

Fig.3. Analogies between natural and pre Columbian patterns. These analogies are not casualties, ancient
Peruvian architectures were built in accordance with cosmic and religious principles and a deep
understanding of the natural environment. The image on the left shows the artistic research of the formal
procedures implicit in nature and Peruvian art. Plates by Veronica Crousse.

Following this hypothesis, we will begin analyzing the problems of shape grammars and L-
Systems, then we will show some strategies to bypass these limitations, finally we will
introduce some new techniques and explain how they could be applied and implemented.
We will use VisualStudio C# and the L-Systems application GDesign [3].
Last but not least, I would like to express gratitude to the Consorcio de Universidades of
Lima, a joint venture between Universidad de Lima, PUCP, Cayetano Heredia and Pacifico
universities, which supported during 2015 our interdisciplinary research.

Shape Grammars and L-Systems, possibilities and limitations
SSRS are very powerful machines to build complex and fractal forms thanks to the
recursive and parametric nature of its processes and the simplicity of its alphanumeric
symbolic language [11]. The recursive substitution process generates complex forms in
few steps with very simple rules. Besides, these systems have been widely reengineered,
and its basic algorithms have been improved using physical computing, genetic
programming, artificial life and more, resulting into new implementations of the SSRS
process like parametric systems, timed systems, context systems and more [12]. So far,
SSRS works very well with fractal forms, but the fractal process is deterministic and, by a
generative point of view, rigid and mathematically defined and the kernel of the substitution
process is always the same [13]. The fact is that the substitution process is lineal, scarcely

GA2016 – XIX Generative Art Conference

Page 381

interactive and rigid.
For instance, there are many complex forms that can’t be obtained by standard,
parametric or context shape grammars or other recursive substitution techniques, as the
pre Columbian forms analysis clearly demonstrated. As an evidence, we can consider the
case of emergence and organic forms, whose diversity is usually faked using pseudo
random number generators. The apparent complexity of computational forms is interpreted
as emergent, making a confusion between complexity and complication that are not
exactly the same. So SSRS claims for a generative nobility that they are not truly entitled
for.

Fig.5. A complex branched structure where every branch holds the number of elements of its branch degree.
The substitution rule provides 1 branch with 1 element, 2 branches with 2 elements, 3 branches with 3
elements, etc. This is impossible to construct with usual SSRS rules because the rule must change at every
level.

The problem is not just the lack of interactivity of the recursive substitution process as
such, but also in its software implementations, including software architecture and the
interface design. This is very important because the development of the recursive process
eventually converts the process itself into something impossible to understand and
visualize. To fix this limitations there are a lot of possibilities:

• Expand the vocabulary of a given SSRS, introducing new symbols for specific tasks
or programming needs

• Develop new kind of rules with automatic context sensibility or randomness
management

• Improve the control over the SSRS workflow
• Design original interface patterns
• Create new tools for editing and postproduction of SSRS objects

In the following chapter we will explain in detail how these techniques can be used to
transform a SSRS implementation into a complete programming system4.

4 Download the LSystem application from our web page

http://www.digitalpoiesis.org

GA2016 – XIX Generative Art Conference

Page 382

Programming string-substitution rewriting systems
So the task is to investigate new symbols, rules, interface designs, process flow controls
and editing tools using L-Systems as our framework. It is important to stress that we found
these algorithms and techniques analyzing natural and pre Columbian patterns, and we
tested them during our Digital Architecture workshops.
Anyway, the basic principle is: the more you create links between parts of a shape
grammar and its symbols, the more generative the process will be.

Expansion of the symbolic language of L-Systems
1) The most important new symbol that we introduced in the vocabulary of L-Systems is
the “=” symbol. “=” freezes its predecessor symbol for 1 turn. “=” can be stacked to multiply
its effect, so: “aa===” means that the first “a” will normally produce its rule, but the second
“a” will be inactive for three iterations. This simple idea do offer a great control on the
substitution process. Many structures are impossible to achieve without “=”.
2) Automatic symbols “q” and “g”. These symbols automatically generate 2, 3 or n copies
of itself in every iteration. For example, if we have a “q” in the axiom, the first iteration will
produce “qq”, the second iteration “qqq”, etc. “q” and “g” can be associated with “=” to
block the production for 1 or more iterations. Using symbol “¡” can invert “q, g” to decrease
the symbol production. If we have string “qqqqqq¡”, the the next iteration will produce
“qqqqq¡”, then “qqqq¡” etc, and stops when the last “q” is deleted.
3) “{,}”.Create patterns of symbols within a rule. Easy to edit with an integer to set how
many patterns will be generated. It is useful to squeeze a long set of symbols to facilitate
the writing and editing of rules. The number can be set as a parameter. Example:

 Fig. 6. “{}” example

4) “s”. Recursive symbol “s”. This symbol takes the complete SSRS string developed in

the current iteration. “s” allows sub recursion, say a recursion inside the main
recursion process.

5) “n”. “n” produces as many symbols as its level of occurrence in the current iteration.
See the following example:

Fig. 7. “n” example. (“YT+” means a Z rotation in the Y axis).

GA2016 – XIX Generative Art Conference

Page 383

Fig. 8. “n” example model. Here “n” commands the number of vertical elements and their rotation angles.

Additionally, “n” has different production rules for every iteration step and it can be
associated with a context symbol “ñ”. The rule of “ñ” depends of its current “n” value. This
allows complex iterations and the automatic connection of rules. Consider the following
grammar:

Fig. 9. “n” and “ñ” example grammar. The first “n” produces “a[T<ñ]”, the second “n” “a[T<ñ] a[T<ñ]”, the third
“n” “a[T<ñ] a[T<ñ] a[T<ñ]”, marked in blue. Then first “ñ” (of the first “n”) produces “a”, because it is the first,
the second “ñ” produces “aa”, because was generated by the second “n”, and so on. So “ñ” is automatically
connected to “n” which is automatically connected with “a”.

GA2016 – XIX Generative Art Conference

Page 384

Fig. 10. Connection of dimensions and rotations using “n” and “ñ”.

6) “?”. Symbol “?” apply a trigonometric formula or a set of data to rotation angles. In our

implementation formula and data can be set using interactive interface elements.

Fig. 11. Example of “?” symbol. User can set the mathematic expression and its variables values.

Functions and procedures
L.Systems can be improved with new symbols and with special rules and functions. In the
following chapter we will show some solutions for random string generation, functions, and
rules connected with external data source like databases or images.
1) Random rules and functions. Randomness is very important to achieve difference and
variety. The problem is how to control random number generation, for instance, to maintain

GA2016 – XIX Generative Art Conference

Page 385

the coherence of random values between parts or branches of the model. We
implemented symbols “R,S,W” as macros or functions where you can set the min/max
range of string’s length and the symbols to be randomly inserted. User can choose
between random length with one unique symbol, fixed length with random symbols, or
both. “R,S,W” work with “=” symbol, so you can generate a random value at the beginning
of the process and maintain this value later on. For instance: “RbbaP+R=” means that “R=”
uses the random value of the first “R”. A typical application are grammars to build random
modular forms.

Fig. 12. Interface of “R,S,W” symbols. The number sets the maximum random length of the string, the letters
the symbols that will be randomly sorted to generate the string.

2) SubSystems rules. LSystem within another LSystems. With symbols “A,B,C” the
programmer can insert a complete SSRS within another SSRS. These embedded systems
are called subsystems. They have independent parameters and are context sensitive,
which means that they can react with their main system’ symbols. This technique enhance
the parameterization, the formal complexity of the system and the level of programmability
of the SSRS.
3) Parametric, programmable image or data rules. The user can load a bitmap and
display the SSRS over the bitmap. An interactive palette can be used to set a rule within
RGB or Brightness thresholds. It is possible to modify size, production, rotations, or
bracketing.

Fig. 9. Parametric brick wall using image rule with symbol “i”. The bricks are displayed over a background,
and each brick will take a rotation rule that depends on the RGB values of the pixel in the same position.
(“T+” means one clockwise rotation, “T---“ three counterclockwise rotations, etc.).

Flow
1) Symbol “r”. This symbol can take the rule of any symbol of any iteration step of the
current grammar. It is a sort of the “go to” used in procedural programming. Usewr can set
these rules with an apposite palette.

GA2016 – XIX Generative Art Conference

Page 386

 Fig. 10. Symbol “r” emulates “go to”.

2) Sequences. A sequence is a list of rules, set in any order, that user can create from
scratch or assemble from a database. User can create an array of rules of any dimension,
say a double array “rules[10][10]” that provides 100 different rules. The indexes numbers
can be parameterized and defined by rules; this allows complex rule generation and the
linking of rules between different levels of the SSRS.

Fig. 11. Sequences. Every index’ number can be set by rules. So one symbol can decide the rule of other
symbols.

3) Loops or automatic repetition of rules. It’s like the “generative” power of symbols and
rules. User can set how many times the rule is applied. This allows to differentiate how
symbols work. And the loop value can be set by rules and be parameterized.

Fig. 12 - 13. The first column with black numbers indicates the substitution process step, the number in the
box sets the loop, say, how many times the rule will be applied.

Interface design
The goal of the interface design is to make easy the understanding of the development of
the substitution process, to facilitate the editing of rules and parameters, and to provide
real time help. We used the ancient Peruvian “quipus” [14] as a visual and algorithmic

GA2016 – XIX Generative Art Conference

Page 387

metaphor.5

Fig. 14. The interface architecture. The idea is to make every function or task completely visible to the user.
The SRSS process algorithm unfolds completely through the interface, like the pre Columbian “quipu”, an
artifact made of colored stripes used to register and compute data.

Fig. 15. The famous alphanumeric symbolic interpretation of Peruvian “quipus” by Raimondo di Sangro,
prince of San Severo. 1750.

Editing

5 Note the top down architecture of the process in the quipus’ knot

pattern and the L-System’s rules of our application.

GA2016 – XIX Generative Art Conference

Page 388

The alphanumeric string representations of 2D/3D models associated with traditional
geometry information (vertex, face, solid) allows for interesting editing possibilities. The
similarity with SSRS strings and DNA is obvious, and suggests hybridization options such
as: chemical reactions between symbols of different SSRS, insertion of strings of symbols
(like genes), removal of chunks of symbols, etc. Compression is the opposite of
production: we have rules (a chunk of symbols) that we can revert to its origin. Chemical
reactions between symbols can be parameterized and context sensitive.

 Fig. 16. Editing, compress example.

Fig. 17. Editing, compress example.

To generate complex models, the editing solution has many advantages compared with
the standard substitution process. To begin with, it’s possible to do things that otherwise
are really difficult or even impossible; the genetic representation of LSystems strings, for
instance, makes easy to select points of insertion and connect different forms, this
operation can be done considering different data types linked to each symbol of the
system.
This obviously increases the model data size, but with actual PC’s this it’s not a problem.
Data structure for each symbol includes:

• Age: it gets bigger whenever a symbol maintains in the same position inside the
string.

Fig. 18. Age computation.

• Distance: computes the symbolic distance from roots. It’s a powerful notation
because these system are built on huge ramifications

• Density: number of objects inside a piece of string or a branch
• Homogeneity: frequency of symbols inside a piece of string or a branch

GA2016 – XIX Generative Art Conference

Page 389

Other possible actions are:

• Symbolic geometric transformation (shrink, twist, bend, etc.). This way it is easy to
insert rotations. Take the string “aaaa”, and the insertion “T+”. So the editing result
will be “T+aT+aT+aT+a”, this does not depends from a substitution rule, so the
effects are completely different.

• Append strings. This editing function allows to append strings at hen end or at the
beginning of a branch.

• Substitute chunks. Patterns of symbols can be substituted with other patterns.

The basic case is the hybrid of horizontal and vertical lines.

 Fig. 19-20. The basics of hybrid forms: horizontal line + vertical line = stairs.

GA2016 – XIX Generative Art Conference

Page 390

Fig. 21. A more complex hybridization example: stairs + logarithmic spiral.

Fig. 22. The hybridization of a plane and a logarithmic spiral. Note that planes in L-Systems are made of
branches of horizontal or vertical lines.

Conclusions

GA2016 – XIX Generative Art Conference

Page 391

 Fig. 23. 3D programmable double spiral rule with L-System.

String Rewriting Substitution Systems are powerful algorithms to generate complex forms
for art, architecture, industrial and graphic design; these systems do offer a lot of
advantages in terms of generative design:

• Coherence between the symbolic language of SSRS strings and the properties of
form, that helps the generative development of complexity

• SRSS computational simplicity facilitates the procedural and generative
understanding of form

• The symbolic notation makes easy to expand the computational power of SRSS
with different metaphors, such as genetics.

• SRSS can be personalized and applied to different application and formal contexts
In this article we have tried to expand the generative capabilities of SSRS with:

• New symbols
• New rule’s types
• Editing and postproduction
• Interface metaphors

Yet, the comprehension of computational procedures of recursive and substitution
processes is still in its beginnings and its artistic potential are not fully understood and
developed. Starting with the techniques described in this article, it should be quite easy to
greatly expand the programming capabilities of SSRS and its many advantages for
emergent, complex and generative designs.
References

GA2016 – XIX Generative Art Conference

Page 392

1. Stiny, G. y Gips, J. (1972). Shape Grammars and the Generative Specification of
Painting and Sculpture. En Petrocelli O. R. (Ed.). The Best Computer Papers of
1971. Philadelphia: Auerbach.

2. Prusinkiewicz, P. and Hanan, J. (1989). Lindenmayer Systems, Fractal, and Plants.
New York: Springer-Verlag.

3. Prusinkiewicz, P. and Runions, A. Computational models of plant development and form.
New Phytologist 193, pp. 549-569, 2012.

4. Reynoso, C. (2008). Diseño artístico y arquitectónico con gramáticas complejas.
[en línea]. http://carlosreynoso.com.ar.

5. Fišer, Marek. (2012). L-Systems on line. Bachelor Thesis. Faculty of Mathematics
and Physics. Prague: Charles University.

6. Di Napoli, Giuseppe. (2011). I principi della forma. Natura, percezione e arte.
Torino: Einaudi.

7. Flake, Gary W. (1998). The computational beauty of nature. Cambridge: The MIT

Press.

8. Stevens, P. (1986). Patrones y pautas en la naturaleza. Barcelona: Salvat.

9. Ball, P. (2001). The self-made tapestry. Pattern formation in nature. New York:
Oxford University Press.

10. Crousse, V. (2011). Reencontrado la espacialidad en el arte público del Perú. Tesis
doctoral en Espacio público y regeneración urbana: arte, teoría y conservación del
patrimonio. Barcelona: Universidad de Barcelona, Facultad de Bellas Artes. [en
línea]. http://www.tdx.cat/handle/10803/1551.

11. Ruiz-Montiel, M., Boned, J., Gavilanes, J., (...), Mandow, L., Pérez-de-la-Cruz, J.-L. (2014).
Architectural Design with Simple Shape Grammars and Learning. Inteligencia Artificial 17 (54),
pp. 21-29.

12. Jesus, D., Coelho, A., Sousa, A.A. (2016). Layered Shape Grammars for Procedural Modelling of
Buildings. Visual Computer 32 (6-8), pp. 933-943.

13. Leyton, M. (2001). A Generative Theory of Shape. Berlin: Springer-Verlag.

14. Di Sangro, R. (1750). Lettera Apologetica dell’Esercitato Accademico della Crusca contenente

la Difesa del libro intitolato Lettere d’una Peruana per rispetto alla supposizione de’ Quipu scritta alla
Duchessa di S**** e dalla medesima fatta pubblicare. Napoles, s/e.

http://algorithmicbotany.org/papers/tansley.np2012.html
http://carlosreynoso.com.ar/
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=36706543600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=37068865700&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55567900600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6602271291&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6603886170&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84924093361&origin=resultslist&sort=plf-f&src=s&st1=shape+grammars&nlo=&nlr=&nls=&sid=46A3FB6D967AB0B0DAA85F3E733A2830.wsnAw8kcdt7IPYLO0V48gA%3a10&sot=b&sdt=b&sl=29&s=TITLE-ABS-KEY%28shape+grammars%29&relpos=141&citeCnt=0&searchTerm=
https://www.scopus.com/source/sourceInfo.uri?sourceId=24258&origin=resultslist
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55931124300&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=23089899600&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=16220472800&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84968531475&origin=resultslist&sort=plf-f&src=s&st1=shape+grammars&st2=&sid=46A3FB6D967AB0B0DAA85F3E733A2830.wsnAw8kcdt7IPYLO0V48gA%3a10&sot=b&sdt=b&sl=29&s=TITLE-ABS-KEY%28shape+grammars%29&relpos=14&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-84968531475&origin=resultslist&sort=plf-f&src=s&st1=shape+grammars&st2=&sid=46A3FB6D967AB0B0DAA85F3E733A2830.wsnAw8kcdt7IPYLO0V48gA%3a10&sot=b&sdt=b&sl=29&s=TITLE-ABS-KEY%28shape+grammars%29&relpos=14&citeCnt=0&searchTerm=
https://www.scopus.com/source/sourceInfo.uri?sourceId=26146&origin=resultslist

GA2016 – XIX Generative Art Conference

Page 393

